3.1.44 \(\int \frac {a+b \log (c x^n)}{x^2 (d+e x)^2} \, dx\) [44]

3.1.44.1 Optimal result
3.1.44.2 Mathematica [A] (verified)
3.1.44.3 Rubi [A] (verified)
3.1.44.4 Maple [C] (warning: unable to verify)
3.1.44.5 Fricas [F]
3.1.44.6 Sympy [A] (verification not implemented)
3.1.44.7 Maxima [F]
3.1.44.8 Giac [F]
3.1.44.9 Mupad [F(-1)]

3.1.44.1 Optimal result

Integrand size = 21, antiderivative size = 114 \[ \int \frac {a+b \log \left (c x^n\right )}{x^2 (d+e x)^2} \, dx=-\frac {b n}{d^2 x}-\frac {a+b \log \left (c x^n\right )}{d^2 x}+\frac {e^2 x \left (a+b \log \left (c x^n\right )\right )}{d^3 (d+e x)}+\frac {2 e \log \left (1+\frac {d}{e x}\right ) \left (a+b \log \left (c x^n\right )\right )}{d^3}-\frac {b e n \log (d+e x)}{d^3}-\frac {2 b e n \operatorname {PolyLog}\left (2,-\frac {d}{e x}\right )}{d^3} \]

output
-b*n/d^2/x+(-a-b*ln(c*x^n))/d^2/x+e^2*x*(a+b*ln(c*x^n))/d^3/(e*x+d)+2*e*ln 
(1+d/e/x)*(a+b*ln(c*x^n))/d^3-b*e*n*ln(e*x+d)/d^3-2*b*e*n*polylog(2,-d/e/x 
)/d^3
 
3.1.44.2 Mathematica [A] (verified)

Time = 0.09 (sec) , antiderivative size = 120, normalized size of antiderivative = 1.05 \[ \int \frac {a+b \log \left (c x^n\right )}{x^2 (d+e x)^2} \, dx=-\frac {\frac {b d n}{x}+\frac {d \left (a+b \log \left (c x^n\right )\right )}{x}+\frac {d e \left (a+b \log \left (c x^n\right )\right )}{d+e x}+\frac {e \left (a+b \log \left (c x^n\right )\right )^2}{b n}-b e n (\log (x)-\log (d+e x))-2 e \left (a+b \log \left (c x^n\right )\right ) \log \left (1+\frac {e x}{d}\right )-2 b e n \operatorname {PolyLog}\left (2,-\frac {e x}{d}\right )}{d^3} \]

input
Integrate[(a + b*Log[c*x^n])/(x^2*(d + e*x)^2),x]
 
output
-(((b*d*n)/x + (d*(a + b*Log[c*x^n]))/x + (d*e*(a + b*Log[c*x^n]))/(d + e* 
x) + (e*(a + b*Log[c*x^n])^2)/(b*n) - b*e*n*(Log[x] - Log[d + e*x]) - 2*e* 
(a + b*Log[c*x^n])*Log[1 + (e*x)/d] - 2*b*e*n*PolyLog[2, -((e*x)/d)])/d^3)
 
3.1.44.3 Rubi [A] (verified)

Time = 0.37 (sec) , antiderivative size = 114, normalized size of antiderivative = 1.00, number of steps used = 2, number of rules used = 2, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.095, Rules used = {2793, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {a+b \log \left (c x^n\right )}{x^2 (d+e x)^2} \, dx\)

\(\Big \downarrow \) 2793

\(\displaystyle \int \left (\frac {e^2 \left (a+b \log \left (c x^n\right )\right )}{d^2 (d+e x)^2}-\frac {2 e \left (a+b \log \left (c x^n\right )\right )}{d^2 x (d+e x)}+\frac {a+b \log \left (c x^n\right )}{d^2 x^2}\right )dx\)

\(\Big \downarrow \) 2009

\(\displaystyle \frac {e^2 x \left (a+b \log \left (c x^n\right )\right )}{d^3 (d+e x)}+\frac {2 e \log \left (\frac {d}{e x}+1\right ) \left (a+b \log \left (c x^n\right )\right )}{d^3}-\frac {a+b \log \left (c x^n\right )}{d^2 x}-\frac {2 b e n \operatorname {PolyLog}\left (2,-\frac {d}{e x}\right )}{d^3}-\frac {b e n \log (d+e x)}{d^3}-\frac {b n}{d^2 x}\)

input
Int[(a + b*Log[c*x^n])/(x^2*(d + e*x)^2),x]
 
output
-((b*n)/(d^2*x)) - (a + b*Log[c*x^n])/(d^2*x) + (e^2*x*(a + b*Log[c*x^n])) 
/(d^3*(d + e*x)) + (2*e*Log[1 + d/(e*x)]*(a + b*Log[c*x^n]))/d^3 - (b*e*n* 
Log[d + e*x])/d^3 - (2*b*e*n*PolyLog[2, -(d/(e*x))])/d^3
 

3.1.44.3.1 Defintions of rubi rules used

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 2793
Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))*((f_.)*(x_))^(m_.)*((d_) + (e_.)* 
(x_)^(r_.))^(q_.), x_Symbol] :> With[{u = ExpandIntegrand[a + b*Log[c*x^n], 
 (f*x)^m*(d + e*x^r)^q, x]}, Int[u, x] /; SumQ[u]] /; FreeQ[{a, b, c, d, e, 
 f, m, n, q, r}, x] && IntegerQ[q] && (GtQ[q, 0] || (IntegerQ[m] && Integer 
Q[r]))
 
3.1.44.4 Maple [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.44 (sec) , antiderivative size = 276, normalized size of antiderivative = 2.42

method result size
risch \(-\frac {b \ln \left (x^{n}\right ) e}{d^{2} \left (e x +d \right )}+\frac {2 b \ln \left (x^{n}\right ) e \ln \left (e x +d \right )}{d^{3}}-\frac {b \ln \left (x^{n}\right )}{d^{2} x}-\frac {2 b \ln \left (x^{n}\right ) e \ln \left (x \right )}{d^{3}}+\frac {b n e \ln \left (x \right )^{2}}{d^{3}}-\frac {2 b n e \ln \left (e x +d \right ) \ln \left (-\frac {e x}{d}\right )}{d^{3}}-\frac {2 b n e \operatorname {dilog}\left (-\frac {e x}{d}\right )}{d^{3}}-\frac {b e n \ln \left (e x +d \right )}{d^{3}}-\frac {b n}{d^{2} x}+\frac {b n e \ln \left (x \right )}{d^{3}}+\left (-\frac {i b \pi \,\operatorname {csgn}\left (i c \right ) \operatorname {csgn}\left (i x^{n}\right ) \operatorname {csgn}\left (i c \,x^{n}\right )}{2}+\frac {i b \pi \,\operatorname {csgn}\left (i c \right ) \operatorname {csgn}\left (i c \,x^{n}\right )^{2}}{2}+\frac {i b \pi \,\operatorname {csgn}\left (i x^{n}\right ) \operatorname {csgn}\left (i c \,x^{n}\right )^{2}}{2}-\frac {i b \pi \operatorname {csgn}\left (i c \,x^{n}\right )^{3}}{2}+b \ln \left (c \right )+a \right ) \left (-\frac {e}{d^{2} \left (e x +d \right )}+\frac {2 e \ln \left (e x +d \right )}{d^{3}}-\frac {1}{d^{2} x}-\frac {2 e \ln \left (x \right )}{d^{3}}\right )\) \(276\)

input
int((a+b*ln(c*x^n))/x^2/(e*x+d)^2,x,method=_RETURNVERBOSE)
 
output
-b*ln(x^n)/d^2*e/(e*x+d)+2*b*ln(x^n)/d^3*e*ln(e*x+d)-b*ln(x^n)/d^2/x-2*b*l 
n(x^n)/d^3*e*ln(x)+b*n/d^3*e*ln(x)^2-2*b*n/d^3*e*ln(e*x+d)*ln(-e*x/d)-2*b* 
n/d^3*e*dilog(-e*x/d)-b*e*n*ln(e*x+d)/d^3-b*n/d^2/x+b*n/d^3*e*ln(x)+(-1/2* 
I*b*Pi*csgn(I*c)*csgn(I*x^n)*csgn(I*c*x^n)+1/2*I*b*Pi*csgn(I*c)*csgn(I*c*x 
^n)^2+1/2*I*b*Pi*csgn(I*x^n)*csgn(I*c*x^n)^2-1/2*I*b*Pi*csgn(I*c*x^n)^3+b* 
ln(c)+a)*(-1/d^2*e/(e*x+d)+2/d^3*e*ln(e*x+d)-1/d^2/x-2/d^3*e*ln(x))
 
3.1.44.5 Fricas [F]

\[ \int \frac {a+b \log \left (c x^n\right )}{x^2 (d+e x)^2} \, dx=\int { \frac {b \log \left (c x^{n}\right ) + a}{{\left (e x + d\right )}^{2} x^{2}} \,d x } \]

input
integrate((a+b*log(c*x^n))/x^2/(e*x+d)^2,x, algorithm="fricas")
 
output
integral((b*log(c*x^n) + a)/(e^2*x^4 + 2*d*e*x^3 + d^2*x^2), x)
 
3.1.44.6 Sympy [A] (verification not implemented)

Time = 30.60 (sec) , antiderivative size = 318, normalized size of antiderivative = 2.79 \[ \int \frac {a+b \log \left (c x^n\right )}{x^2 (d+e x)^2} \, dx=\frac {a e^{2} \left (\begin {cases} \frac {x}{d^{2}} & \text {for}\: e = 0 \\- \frac {1}{d e + e^{2} x} & \text {otherwise} \end {cases}\right )}{d^{2}} - \frac {a}{d^{2} x} + \frac {2 a e^{2} \left (\begin {cases} \frac {x}{d} & \text {for}\: e = 0 \\\frac {\log {\left (d + e x \right )}}{e} & \text {otherwise} \end {cases}\right )}{d^{3}} - \frac {2 a e \log {\left (x \right )}}{d^{3}} - \frac {b e^{2} n \left (\begin {cases} \frac {x}{d^{2}} & \text {for}\: e = 0 \\- \frac {\log {\left (x \right )}}{d e} + \frac {\log {\left (\frac {d}{e} + x \right )}}{d e} & \text {otherwise} \end {cases}\right )}{d^{2}} + \frac {b e^{2} \left (\begin {cases} \frac {x}{d^{2}} & \text {for}\: e = 0 \\- \frac {1}{d e + e^{2} x} & \text {otherwise} \end {cases}\right ) \log {\left (c x^{n} \right )}}{d^{2}} - \frac {b n}{d^{2} x} - \frac {b \log {\left (c x^{n} \right )}}{d^{2} x} - \frac {2 b e^{2} n \left (\begin {cases} \frac {x}{d} & \text {for}\: e = 0 \\\frac {\begin {cases} - \operatorname {Li}_{2}\left (\frac {e x e^{i \pi }}{d}\right ) & \text {for}\: \frac {1}{\left |{x}\right |} < 1 \wedge \left |{x}\right | < 1 \\\log {\left (d \right )} \log {\left (x \right )} - \operatorname {Li}_{2}\left (\frac {e x e^{i \pi }}{d}\right ) & \text {for}\: \left |{x}\right | < 1 \\- \log {\left (d \right )} \log {\left (\frac {1}{x} \right )} - \operatorname {Li}_{2}\left (\frac {e x e^{i \pi }}{d}\right ) & \text {for}\: \frac {1}{\left |{x}\right |} < 1 \\- {G_{2, 2}^{2, 0}\left (\begin {matrix} & 1, 1 \\0, 0 & \end {matrix} \middle | {x} \right )} \log {\left (d \right )} + {G_{2, 2}^{0, 2}\left (\begin {matrix} 1, 1 & \\ & 0, 0 \end {matrix} \middle | {x} \right )} \log {\left (d \right )} - \operatorname {Li}_{2}\left (\frac {e x e^{i \pi }}{d}\right ) & \text {otherwise} \end {cases}}{e} & \text {otherwise} \end {cases}\right )}{d^{3}} + \frac {2 b e^{2} \left (\begin {cases} \frac {x}{d} & \text {for}\: e = 0 \\\frac {\log {\left (d + e x \right )}}{e} & \text {otherwise} \end {cases}\right ) \log {\left (c x^{n} \right )}}{d^{3}} + \frac {b e n \log {\left (x \right )}^{2}}{d^{3}} - \frac {2 b e \log {\left (x \right )} \log {\left (c x^{n} \right )}}{d^{3}} \]

input
integrate((a+b*ln(c*x**n))/x**2/(e*x+d)**2,x)
 
output
a*e**2*Piecewise((x/d**2, Eq(e, 0)), (-1/(d*e + e**2*x), True))/d**2 - a/( 
d**2*x) + 2*a*e**2*Piecewise((x/d, Eq(e, 0)), (log(d + e*x)/e, True))/d**3 
 - 2*a*e*log(x)/d**3 - b*e**2*n*Piecewise((x/d**2, Eq(e, 0)), (-log(x)/(d* 
e) + log(d/e + x)/(d*e), True))/d**2 + b*e**2*Piecewise((x/d**2, Eq(e, 0)) 
, (-1/(d*e + e**2*x), True))*log(c*x**n)/d**2 - b*n/(d**2*x) - b*log(c*x** 
n)/(d**2*x) - 2*b*e**2*n*Piecewise((x/d, Eq(e, 0)), (Piecewise((-polylog(2 
, e*x*exp_polar(I*pi)/d), (Abs(x) < 1) & (1/Abs(x) < 1)), (log(d)*log(x) - 
 polylog(2, e*x*exp_polar(I*pi)/d), Abs(x) < 1), (-log(d)*log(1/x) - polyl 
og(2, e*x*exp_polar(I*pi)/d), 1/Abs(x) < 1), (-meijerg(((), (1, 1)), ((0, 
0), ()), x)*log(d) + meijerg(((1, 1), ()), ((), (0, 0)), x)*log(d) - polyl 
og(2, e*x*exp_polar(I*pi)/d), True))/e, True))/d**3 + 2*b*e**2*Piecewise(( 
x/d, Eq(e, 0)), (log(d + e*x)/e, True))*log(c*x**n)/d**3 + b*e*n*log(x)**2 
/d**3 - 2*b*e*log(x)*log(c*x**n)/d**3
 
3.1.44.7 Maxima [F]

\[ \int \frac {a+b \log \left (c x^n\right )}{x^2 (d+e x)^2} \, dx=\int { \frac {b \log \left (c x^{n}\right ) + a}{{\left (e x + d\right )}^{2} x^{2}} \,d x } \]

input
integrate((a+b*log(c*x^n))/x^2/(e*x+d)^2,x, algorithm="maxima")
 
output
-a*((2*e*x + d)/(d^2*e*x^2 + d^3*x) - 2*e*log(e*x + d)/d^3 + 2*e*log(x)/d^ 
3) + b*integrate((log(c) + log(x^n))/(e^2*x^4 + 2*d*e*x^3 + d^2*x^2), x)
 
3.1.44.8 Giac [F]

\[ \int \frac {a+b \log \left (c x^n\right )}{x^2 (d+e x)^2} \, dx=\int { \frac {b \log \left (c x^{n}\right ) + a}{{\left (e x + d\right )}^{2} x^{2}} \,d x } \]

input
integrate((a+b*log(c*x^n))/x^2/(e*x+d)^2,x, algorithm="giac")
 
output
integrate((b*log(c*x^n) + a)/((e*x + d)^2*x^2), x)
 
3.1.44.9 Mupad [F(-1)]

Timed out. \[ \int \frac {a+b \log \left (c x^n\right )}{x^2 (d+e x)^2} \, dx=\int \frac {a+b\,\ln \left (c\,x^n\right )}{x^2\,{\left (d+e\,x\right )}^2} \,d x \]

input
int((a + b*log(c*x^n))/(x^2*(d + e*x)^2),x)
 
output
int((a + b*log(c*x^n))/(x^2*(d + e*x)^2), x)